

CCAT FEASIBILITY/COTICEPT Stray Review 17-18 January 2006

System Design: Option 1

- · Shearing interferometer: focal plane sensing with single pixel detector
- Proven at CSO:
 - 9 µm accuracy
 - 15×15 and 21×21 maps made
 - few hour measurement timescale achieved
- Can be improved significantly in terms of efficiency
- Point-by-point approach will always introduce systematic errors

System Design: Option 2

- Focal-plane Point Diffraction Interferometer
- · Spreads out the energy of the reference beam
- · Makes use of array detectors to instantaneously sense full focal plane field
- Lower instantaneous SNR per point
- · Gains in the areas of stability and systematics

System Design: Option 3

- Pupil-plane Point Diffraction Interferometer
- Switch to pupil-plane sensing in this approach, as in the optical Only need to scan one mirror by $1\text{-}\lambda$

System Design: Hybrid Option

Hybrid Interferometer: focal-plane and/or pupil-plane sensing

Supporting Analysis II
 Ultimate sensitivity of submm wavefront sensors depends on:
- Phase measurement accuracy in the presence of long- λ background noise
 Start with pupil plane measurement case:
• Phase accuracy: $\phi = 1/SNR = sqrt(N_{background})/N_{signal}$
• Signal:
 Source flux per subaperture
 (only Mars, Uranus, Neptune are small and bright enough)
 Atmospheric and instrumental transmission (T)
Noise:
Number of background modes transmitted by cold stop
• Bose-Einstein statistics: $\Delta n = sqrt(n(n+1))$

Suppor	rting Analysi	is III 🔬	>
End with:		CCAI	-
• $\Delta \mathbf{x} \approx \lambda / (100 \mathrm{Tyt})$			
Approximately prop	ortional to λ		
 (Both signal and nois) 	se vary with λ di	ifferently)	
 Short wavelengths have higher accuracy 			
(assuming reasonabl	le atmospheric t	ransmission)	
Calculate time to rea	ach 3- σ sensit	ivity of 3 μm (in a sq.	
m).			
• Assume $T_{inst} \approx 0.1$ (la	argely the pinhol	le)	
♦ Assume T _{atm} (350) –	0.7; T _{atm} (1300) -	- 0.97	
λ (μm)	Time (sec)		
350	25		
1300	240		
CCAT Feasibility/Concept Study Review 17-18 January 200	6		

